Toric ideals, real toric varieties, and the algebraic moment map

نویسنده

  • Frank Sottile
چکیده

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties. In particular, we explain the relation between linear precision and a particular linear projection we call the algebraic moment map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric ideals, real toric varieties, and the moment map

This is a tutorial on some aspects of toric varieties related to their potential use in geometric modeling. We discuss projective toric varieties and their ideals, as well as real toric varieties and the moment map. In particular, we explain the relation between linear precision and the moment map.

متن کامل

Symplectic Toric Manifolds

Foreword These notes cover a short course on symplectic toric manifolds, delivered in six lectures at the summer school on Symplectic Geometry of Integrable Hamiltonian Systems, mostly for graduate students, held at the Centre de Recerca Matemàtica in Barcelona in July of 2001. The goal of this course is to provide a fast elementary introduction to toric manifolds (i.e., smooth toric varieties)...

متن کامل

Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties

The real solutions to a system of sparse polynomial equations may be realized as a fiber of a projection map from a toric variety. When the toric variety is orientable, the degree of this map is a lower bound for the number of real solutions to the system of equations. We strengthen previous work by characterizing when the toric variety is orientable. This is based on work of Nakayama and Nishi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002